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� Elastic net, random forest, and
XGBoost were applied to industrial-
scale biomethane prediction.

� Predictions were made over 1, 3, 5,
10, 20, 30, and 40-day time horizons
to evaluate robustness.

� Depending on the time horizon, out-
of-sample R2 values of up to 0.88
were achieved.

� Feature importance and partial
dependence were used to interpret
these machine models.

� Machine learning models can be a
useful supplement to experimental
and mechanistic models of AD.
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The objective of this study is to apply machine learning models to accurately predict daily biomethane
production in an industrial-scale co-digestion facility. The methodology involved applying elasticnet, ran-
dom forest, and extreme gradient boosting to input–output data from an industrial-scale anaerobic co-
digestion (ACoD) facility. The models were used to predict biomethane for 1-day, 3-day, 5-day, 10-day,
20-day, 30-day, and 40-day time horizons. These models were fit on four years of operational data.
The results showed that elastic net (a model with assumptions of linearity) was clearly outperformed
by random forest and extreme gradient boosting (XGBoost), which had out-of-sample R2 values ranging
between 0.80 and 0.88, depending on the time horizon. In addition, feature importance and partial
dependence analysis demonstrated the marginal and interaction effects on biomethane of selected bio-
waste inputs. For instance, food waste co-digested with percolate were shown to have strong positive
interaction effects. One implication of this study is that XGBoost and random forest algorithms applied
to industrial-scale ACoD data provide dependable prediction results and may be a useful complement
for experimental and mechanistic/theoretical models of anaerobic digestion, especially where detailed
substrate characterization is difficult. However, these models have limitations, and suggestions for deriv-
ing additional value from these methods are proposed.
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1. Introduction

1.1. Anaerobic digestion modeling tools have evolved significantly, but
their practical application to industrial-scale facilities is limited

There are many factors that affect biomethane output in indus-
trial anaerobic co-digestion (ACoD) facilities. These include tem-
perature, input substrate biodegradability, pH, auxiliary chemical
inputs, and more (Hagos et al., 2017). In addition, the interaction
between these factors can be complex and highly non-linear,
which makes modeling anaerobic digestion (AD) phenomena a
challenge, despite the relative maturity of AD technologies (Hu
et al., 2018; Tan et al., 2018).

In the last few decades, many models have been developed to
describe the various phenomena that occur during the AD process.
These models, which were mainly derived through theoretical,
empirical, and statistical approaches, describe phenomena such
as methane potential, reactor stability, AD process inhibition, and
liquid–gas interface mass-transfer. The comprehensive reviews
by Donoso-Bravo et al. (2011), Lauwers et al. (2013), Xu et al.
(2015), and (Manchala et al., 2017) provide insight into the devel-
opment history of these models.

One theoretical approach which has gained considerable popu-
larity is the Anaerobic Digestion Model No. 1 (ADM1), developed
by Batstone et al. (2002). This model was developed as a unified
modeling framework to simulate reactions in the AD process based
on the dynamics of 24 microbial species and 19 bioconversion pro-
cesses. In order to maintain simplicity (Donoso-Bravo et al., 2011)
and generalizability to a broad range of experimental conditions,
several species and processes were not included in the original
generic model.

Despite this original generic setup, the model has been
extended to broaden its applicability to novel AD scenarios
(Batstone et al., 2006; Mendes et al., 2015; Poggio et al., 2016),
mostly based on experimental-scale studies. For instance, (Zhao
et al., 2019) modified the ADM1 structure to reflect the key kinetic
parameters in lab-scale anaerobic digestion of food waste, with
strong results. Other recent ADM1 modifications have focused on
incorporating the effects of calcium and magnesium ions (Zhang
et al., 2015), metabolic products such as lactic acid and ethanol
(Antonopoulou et al., 2012), volatile fatty acids (Bai et al., 2017),
trace elements such iron, nickel and cobalt (Maharaj et al., 2018),
propionate oxidizing bacteria (Uhlenhut et al., 2018) and specific
waste types such slaughterhouse waste (Spyridonidis et al., 2018).

ADM1 has occasionally been adapted to industrial applications
(Batstone and Keller, 2003), but with more limited success. For
instance Derbal et al. (2009) showed that ADM1 had acceptable
performance for model fit on an industrial-scale case study for cer-
tain parameters. However, the study also concluded that the ADM1
model is relatively limited in modeling complex AD processes, and
the model showed weak performance at the initial, transient stage
of experimentation. A key reason for this is that one of the greatest
challenges of ADM1 is the need for detailed substrate characteriza-
tion (meaning determination of the specific composition of waste
based on metrics such as volatile fatty acids, chemical oxygen
demand, and protein content), since the model depends on a rigid
stoichiometric approach.

This characterization requires a more extensive analysis of sub-
strate input than most biogas plants are easily capable of. Although
several studies have suggested ways to facilitate this characteriza-
tion (Girault et al., 2012; Koch et al., 2010), these methods may still
require excessive amounts of analysis. (Nordlander et al., 2017)
applied the ADM1 model in an industrial-scale case study, but
found model fits ranging from 0.28 to 0.78, and concluded that
the extensive analysis needed for substrate characterization is a
hindrance for ADM10s utilization in industrial facilities. The study
recommended exploration of additional models that do not use
chemical oxygen demand as a base unit for model input.
Biernacki et al. (2013) also demonstrated the complexity involved
in the characterization of complex substrates. For instance, they
used 15 different characterization parameters such as dry mass,
raw protein, lipid content, and raw fibre, which may be impractical
for some industrial facilities.

Studies like this imply that while ADM1 is useful for process
design and dynamic simulation, the model’s fixed stoichiometric
approach, which would necessitate excessive structural modifica-
tions in data collection efforts in industrial-scale facilities, may
render it impractical in certain situations. Additional evidence is
needed to demonstrate ADM10s practical effectiveness in modeling
AD phenomena in full-scale facilities, since studies applying the
ADM1 model to industrial projects – especially those where co-
digestion takes place – are especially rare (Nordlander et al., 2017).

Similar limitations apply to other theoretical models. These
include the two-particle model of anaerobic solid state fermenta-
tion (Kalyuzhnyi et al., 2000), which considers solid state anaerobic
digestion to be heterogenous with two kinds of particles in one
reactor: ‘‘seed” and ‘‘waste”, based on the biodegradability and
methanogenic activity. The reaction front model (Martin et al.,
2003) was developed to interpret the slow transport mechanism
in biogas reactors. The distributed model (Vavilin et al., 2003) is
a simple one-dimensional model that involves mass transfer due
to diffusion and leachate flow in solid-state AD reactors. The diffu-
sion limitation model (Xu et al., 2014) was developed to determine
the impact of total solids on lignocellulosic substrates. Limitations
of other models applied to industrial-scale facilities have been
described in Donoso-Bravo et al. (2011)

In addition to theoretical/mathematical models of AD such as
ADM1, recent literature is rich with empirical, lab-scale studies
that have investigated the impact of various parameters on anaer-
obic co-digestion. For instance, Algapani et al. (2017) investigated
the effect of co-digesting food waste and sewage sludge on
methane production. Vivekanand et al. (2018) found that co-
digesting whey, manure, and fish ensilage resulted higher bio-
methane potential than the weighted average of individual sub-
strates. Valenti et al. (2018a) evaluated biomethane potential from
co-digestion of olive pomace, citrus pulp, poultry manure, sainfoin
silage and cladodes. Many similar lab-scale studies investigating
the relationship between various process parameters and methane
yield have been conducted in recent years (Bohutskyi et al., 2018;
Jiang et al., 2018; Jin et al., 2018; López González et al., 2017;
Marques et al., 2018; Meneses-Reyes et al., 2018; Mokomele
et al., 2019; Pastor-Poquet et al., 2018; Pinto et al., 2018;
Rahman et al., 2018; Thorin et al., 2018; Tsapekos et al., 2019;
Valenti et al., 2018b).

Unfortunately, such studies also suffer from limited applicabil-
ity to industrial-scale facilities in that the results of lab-scale stud-
ies results do not always generalize to full-fledged industrial AD
facilities. In fact certain results, such as waste substrate mixtures
deemed optimal for biogas production in experimental conditions,
might actually be ‘‘highly improper for industrial applications”
(Matuszewska et al., 2016). Moreover, experimental determination
of biomethane potential may take up to 50 days to produce results
(Lauwers et al., 2013), which may be impractical for the operators
of industrial facilities.

1.2. Traditional statistical models are helpful, but application to
industrial case studies also have limitations

According to a comprehensive review of anaerobic digestion
modeling approaches conducted by Manchala et al. (2017), statis-
tical models can be useful when exact mechanistic explanations
(derived from theoretical or empirical models) of a specific AD pro-
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cess are not available. In addition, these approaches may be easier
to implement compared to the models above, since statistical mod-
els do not require a deep understanding of biological or physico-
chemical processes (Xu et al., 2015). This especially pertinent
when practical resource constraints make investigating the mech-
anisms behind certain phenomena infeasible.

In some cases, the predictive performance of statistical
approaches is actually similar to that of mechanistic models such
as ADM1. For instance, Thomsen et al. (2014) developed canonical
linear and quadratic mixture models to estimating biomethane
potential from lignocellulosic biomass based on experimental data,
with high r-squared values above 90%. Other studies include Le
Hyaric et al. (2012), which used linear regression to show the rela-
tionship of specific methane activity to moisture content during
mesophilic digestion of municipal solid waste. Motte et al. (2013)
used quadratic multiple linear regression to model the impact of
TS content, inoculation ratio, and particle size of lignocellulosic
biomass on anaerobic digestion. Similarly, multiple linear regres-
sion has been used in numerous studies to predict methane yields
of different substrates based on their chemical composition
(Gunaseelan, 2009; Raposo et al., 2012; Strömberg et al., 2015;
Tong et al., 1990).

Unfortunately, such linear models may not be desirable for
industrial processes. Dandikas et al. (2018) assessed previously
published linear prediction models and found that linear models
had serious limitations for generalized prediction of biomethane
potential. Although experimental literature has showed that in
some cases, a single process parameter can dominate the AD pro-
cess and thus be modelled by linear regression, in most cases ACoD
is a complex, non-linear process which may be better modelled
with more complex approaches (Xu et al., 2014) that account for
non-linearity (Lauwers et al., 2013).

As a result, some studies have applied machine learning tech-
niques, which are capable of modeling non-linear relationships in
various AD phenomena. However, these studies have also been lar-
gely limited to lab-scale set-ups. For example, Mahanty et al.
(2013) applied an artificial neural network to biogas prediction
from industrial sludge from the paper, chemical, petrochemical,
automobile and food industries in a lab-scale study. Sinha et al.
Fig. 1. Overview of
(2002) applied a neural network to simulating upflow anaerobic
sludge blanket (UASB) performance, and trained the network on
experimentally-obtained data. Jacob and Banerjee, (2016) modeled
ACoD of potato waste and aquatic weed based on an artificial neu-
ral network (ANN) coupled with a genetic algorithm (GA). Wang
et al. (2018) applied artificial neural networks to monitoring alka-
linity in a lab-scale anaerobic co-digestion system.

The few studies that have applied machine learning techniques
to full-scale facilities include Hamed et al. (2004) which used an
artificial neural network to model the effluent concentrations of
BOD and SS for a wastewater treatment facility in Cairo. However,
the data collected in the study were limited in time and scope, and
did not include important process parameters such as pH and
temperature.
1.3. Research contributions

This study made two novel contributions. Firstly, this was the
first study demonstrating the strong predictive power of machine
learning algorithms such as XGBoost applied to biomethane mod-
eling, based on industrial-scale ACoD project data. In addition,
emphasis was placed on the interpretability of these models,
which challenges the notion of machine learning being a purely
‘‘black box” approach when applied to modeling of the AD process.
Secondly, this study used data collected over four years of project
operation at a prominent biomethane facility. Such extensive time-
series studies are rare in the literature. These two contributions
address many of the limitations mentioned in sections 1.1. and 1.2.
2. Methodology

The methodology in this study is based on the flowchart in
Fig. 1. Firstly, four years of operational data were collected from
an ACoD facility producing vehicle-quality biomethane. Secondly,
data was prepared and partitioned prior to model building. Thirdly,
various machine learning models were trained in order to predict
biomethane output 1, 3, 5, 10, 20, 30, and 40 days into the future
based on a range of features. Lastly, the results and their implica-
methodology.



Table 1
Summary of collected data, engineered features, and features used in model training.

Feature Type Notation Raw/Derived Model use Units

Day number Time t1; � � � t1;398 Raw N/A
Pig manure Input IN1 Raw Feature t/d (wet waste)
Cassava Input IN2 Raw Feature t/d (wet waste)
Fish waste Input IN3 Raw Feature t/d (wet waste)
Food waste Input IN4 Raw Feature t/d (wet waste)
Municipal fecal waste Input IN5 Raw Feature t/d (wet waste)
Tea waste Input IN6 Raw Feature t/d (wet waste)
Chicken manure Input IN7 Raw Feature t/d (wet waste)
Baggasse Input IN8 Raw Feature t/d (wet waste)
Alcohol waste Input IN9 Raw Feature t/d (wet waste)
Medicine waste Input IN10 Raw Feature t/d (wet waste)
Energy grass Input IN11 Raw Feature t/d (wet waste)
Banana shafts Input IN12 Raw Feature t/d (wet waste)
Lemon waste Input IN13 Raw Feature t/d (wet waste)
Percolate Input IN14 Raw Feature t/d (wet waste)
Other waste Input IN15 Raw Feature t/d (wet waste)
Total waste Input IN16 Raw Feature t/d (wet waste)
Co-digested wastes Input IN17 Derived Feature Number
Biomethane 40 days ahead Output OUT40 Raw, time lead Target m3

Biomethane 30 days ahead Output OUT30 Raw, time lead Target m3

Biomethane 20 days ahead Output OUT20 Raw, time lead Target m3

Biomethane 10 days ahead Output OUT10 Raw, time lead Target m3

Biomethane 50 days ahead Output OUT5 Raw, time lead Target m3

Biomethane 3 days ahead Output OUT3 Raw, time lead Target m3

Biomethane 1 days ahead Output OUT1 Raw, time lead Target m3
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tions were discussed within the broader context of practical ACoD
modeling in industrial-scale biogas facilities.
2.1. Data collection

The case study project is located in Hainan, a tropical island
province in southern China which is a primarily agricultural econ-
omy, with half of all exports being agricultural products. Crops cul-
tivated in Hainan include sugarcane, palm oil, rice, coffee, tea,
coconuts, tropical fruit, and cashews. Livestock breeding includes
chickens, cows, goats, water buffalo, geese, and ducks, and the
island is also a major producer of fish products and various
agriculture-derived processed goods.

The surveyed ACoD facility treats a wide variety of organic
wastes including agricultural waste (livestock manure, banana
straw, sugar cane bagasse, etc.) industrial waste (high-
concentration organic wastewater, fish product waste, etc.), and
municipal waste (food waste, human fecal waste, etc.). The project
covers an area of about 33,000 square meters, and can co-digest up
to 850 t/d of biowaste. The CNY160 million facility can produce
30,000 m3/d of biomethane, which can meet the fuel demand of
250 buses or more than 750 taxis, replacing 8,600 t/y of diesel
and reducing carbon emissions by 25,800 t/y.

The facility was continuously surveyed over a period of almost
four years, from July 2014 to February 2018, equivalent or
46 months or 1,398 days. Operational input data collected included
process inputs such as waste type and corresponding daily input
volume, electricity consumption, water consumption, and auxiliary
chemical inputs. Output data collected included daily values for
raw biogas volume, biomethane volume, liquid digestate volume,
and solid digestate volume. Additional information can be found
in the supplementary information.
2.2. Data preparation

Raw data was consolidated into a unified format and thor-
oughly cleaned (i.e. outlier removal due to sensor failures on speci-
fic days and subsequent nearest-neighbor imputation, removal of
non-numeric values, conversion to factor/numeric, etc.). In addi-
tion, additional features were generated from the initial data, such
as a categorical variable indicating the count of the number of
input waste types co-digested on any given day. Table 1 provides
an overview of the collected data and specific features used in
model training, and Fig. 2 visualizes the primary process inputs
and outputs.

As shown in Fig. 2, the biomethane and fertilizer outputs fluctu-
ated strongly throughout the operational lifetime of the project.
The average values for biomethane, liquid fertilizer and solid fertil-
izer outputs were 5,423 m3/d, 40.95 t/d, and 9.76 t/d respectively.
Average waste input was 172.5 t/d over the survey period,
although the specific waste composition fluctuated significantly
(bottom right panel of Fig. 2)
2.3. Model development

2.3.1. Model overview
The objective of the machine learning models (described in

detail in section 2.3.2) was to predict future biomethane output
at 1, 3, 5, 10, 20, 30, and 40 days into the future, corresponding
to variables OUT1; OUT3, OUT5, OUT10, OUT20, OUT30, and OUT40.
These variables are represented as target output vectors
v1;v3;v5;v10;v20;v30, and v40 in Fig. 3. Prior to model training,
data was partitioned into a training set and a test set based on a
0.90 train-test split ratio, resulting in 1,222 training observations
and 136 test observations. This high split ratio was chosen to
reflect the scarcity of data and to maximize the models’ ability to
learn from the data. Models were trained to map a function f xð Þ
capable of using a 1;222� 17 matrix A composed of features
IN1; � � � ; IN17 across 1,222 days (observations) to predict bio-
methane output. A total of 21 models were trained; Elastic Net,
Random Forest, XGBoost models were trained seven times each
to predict future biomethane OUT1; OUT3, OUT5, OUT10, OUT20,
OUT30, and OUT40.

Supervised machine learning algorithms refer to methods such
as classification and regression, where we have access to p features
X1;X2; � � � ;Xp; measured on n observations, as well as a response



Fig. 2. visualization of primary inputs and outputs in the ACoD facility.
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variable Y also measured on n observations. The objective is to pre-
dict Y using X1;X2; � � � ;Xp. Supervised learning can be useful for
both regression problems (where the Y variable takes a continuous
quantitative value) and classification problems (which occur when
a response variable Y takes a qualitative/categorical value). This
study uses features IN1; � � � ; IN17 to predict the target variables T1;

OUT3, OUT5, OUT10, OUT20, OUT30, and OUT40 (future biomethane
yield at different prediction horizons). The algorithms applied to
this supervised learning problem included elastic net, random for-
est, and XGBoost.
2.3.2. Elastic net
The elastic net (EN) regression algorithm, proposed by Zou and

Hastie (2005), is a regularized least squares regression method that
has been widely used for supervised learning. The method is espe-
cially useful where the number of features is large and variable
selection is required or favored. Elastic net is a hybrid approach
that linearly combines the L1 and L2 penalties of the lasso and ridge
methods. A naïve formulation can be expressed asbb ¼ argmin

b
y � Xbj j2 þ k2 bj j2 þ k1 bj j (1)
Where k! And k2 are tuning parameters, X is an n�m sample
matrix in which the ith row contains sample xi,

y ¼ y1; y2; � � � ; ynð ÞT is the response vector, �j j2 is the squared sum
of all elements in the vector, and �j j is the sum of absolute values
of all elements in the vector (Tan et al., 2011). Additional mathe-
matical details can be found in Hastie et al. (2009) and Angelini
(2019).
2.3.3. Random forest
The random forest (RF) algorithm, first proposed by Ho (1995)

and further developed by Breiman (2001) is an ensemble learning
method for regression and classification. It is a substantial modifi-
cation of bootstrap aggregation (bagging) which operates by con-
structing many de-correlated decision trees and outputs their
average predictions. The key idea in bagging is to average numer-
ous noisy but unbiased models to reduce variance. Decision trees
are ideal base models for the bagging process, since they capture
complex interactions in the data. However, since decision trees
are noisy models, they benefit from the averaging induced by
bagging.



Fig. 3. overview of data structure and trained models.
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Algorithm 1: Random Forest

1. For b ¼ 1 to B :

a. Draw a bootstrap sample Z� of size N from the training
data.

b. Grow a random-forest tree Tb to the bootstrapped data,
by recursive repetition of the following steps for each
tree’s terminal node, until minimum node size nmin is
achieved.
i. Select m variables randomly from the p variables.
ii. Select the best variable/split-point among m.
iii. Split the node into two nodes.
2. Output the ensemble of trees Tbf gB1
To make a regression prediction based on a new

pointx :bf Brf xð Þ ¼ 1
B

PB
b¼1T x;Hbð Þ:

The key idea of random forests (see Algorithm 1) is to further
enhance the variance reduction of bagging by de-correlating trees,
without excessively increasing variance. This is achieved by random
selection of input variables, specifically by selecting m � p of the
input variables at random as splitting candidates.
2.3.4. Xgboost

Extreme gradient boosting (XGBoost), proposed by Chen and
Guestrin (2016), is an efficient and scalable variant of the gradient
boosting machine (GBM) algorithm. Specifically, XGBoost uses a
more regularized model formulation than GBM, which controls
over-fitting. In addition, the XGBoost implementation has impor-
tant performance enhancements including (1) the use of sparse
matrices; (2) improved data structures for better processor cache
utilization; and (3) support for multi-core processing which
reduces training time. It commonly outperforms powerful meth-
ods such as support vector machines (SVM) and deep learning neu-
ral networks (Stojić et al., 2019).

Like random forest, the XGBoost builds an ensemble of decision
trees which can capture non-linear interactions in data. A key dif-
ference, however, is that boosting grows decision trees sequen-
tially, meaning that the growth of a particular tree takes into
account the other trees that have already been grown. Algorithm
2 presents the generic gradient tree boosting algorithm which
XGBoost is based on.

Algorithm 2: Gradient Tree Boosting

a. Initialize f 0 xð Þ ¼ argmin
c

PN
i¼1L yi; cð Þ

b. For m ¼ 1 to M:

c. For i ¼ 1;2; � � � ;N computerim ¼ �� @L yi ;f xið Þð Þ
@f xið Þ

h i
f¼f m�1

d. Fit a regression tree to the targets rim giving terminal
regions Rjm; j ¼ 1;2; ::Jm
e. For j ¼ 1;2; ::Jm
computecjm ¼ argmin

c

P
xi2Rjm

L yi; f m�1 xið Þ þ cð Þ

f. Update f m xð Þ ¼ f m�1 xð Þ þPJm
j¼1cjmI x 2 Rjm

� �
:

g. Output bf xð Þ ¼ f M xð Þ.
2.3.5. Hyperparameter tuning
In machine learning, various models have hyperparameters

which can be optimized to reduce over-fitting and enhance the
models’ prediction performance (Hamidieh, 2018). For elastic net,
the tuned parameters included (1) fraction of full solution and
(2) weight decay. For random forest, the tuning parameters
included (1) number of randomly selected predictors, (2) splitting
rule, and (3) minimal node size. For XGBoost, the tuning parame-
ters included (1) number of boosting iterations, (2) max tree depth,
(3) shrinkage, (4) minimum loss reduction, (5) subsample ratio of
columns, (6) minimum sum of instance weight, and (7) subsample



Fig. 4. tuned hyperparameters of 40-day prediction horizon XGBoost model.
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percentage (Climent et al., 2018). An example of the tuned hyper-
parameters of an XGBoost model at the 40-day prediction horizon
is illustrated in Fig. 4. More information on the final parameter val-
ues for the best-performing models can be found in the online code
supplement.

2.3.6. Model evaluation
After models have been trained, it is necessary to test their gen-

eralization performance. Two metrics were used for model evalua-
tion, out-of-sample r-squared (OSR2) and root mean squared error
(RMSE). RMSE is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

PN
i¼1

bF xð Þ � y
� �2

r
(2)

Where N is the number of data points in the test set, bF is the
output of the predictor, and y is the actual output value. OSR2

is computed via

R2
OS ¼ 1�

PN

t¼1
rt�br t� �2PN

t¼1
rt�rtð Þ2 (3)

where brt is the fitted value from a predictive regression esti-
mated though period t � 1, and rt is the average of the regres-
sand through period t � 1.

2.3.7. Feature importance and partial dependence
It is useful to interpret the derived approximation of f xð Þ in this

study to better understand the impact of particular input variables
that are most influential in contribution to its variance (Friedman,
2001). This study computed and visualized feature importance
plots to better understand the features driving variance in the tar-
get variable. Feature importance can be understood as the increase
in model prediction error from removing certain variables.

However, insights provided from ranking features by their
importance is limited. Once important features have been identi-
fied, it is often necessary to evaluate the relationship between
them and the response variable. This can be achieved by construct-
ing partial dependence plots (PDPs), which visualize the relation-
ship between a subset of model features (typically one to three
features) and the target variable, while accounting for the average
effect of other model predictors. The partial dependence of a target
variable on input feature zs can be defined as
f s zsð Þ ¼ Ezc
bf xð Þ
h i

¼ Ezc
bf zs; zcð Þ
h i

¼ R bf zs; zcð Þpc zcð Þdzc (4)
where x ¼ x1; x2; � � � ; xp

� �
represents predictors in a model

where the prediction function is bf xð Þ, x is partitioned into an
interest set zs and its compliment zc ¼ xfzs, pc is the marginal
probability density of zc : pc zcð Þ ¼ R

p xð Þdzs. Eq. 4 can be
estimated on training data by

f s zsð Þ ¼ 1
n

Pn
i¼1

bf zs; zi;c
� �

(5)
where zi;c i ¼ 1;2; � � � ;nð Þ are values of zc found in the training
sample, meaning that effects of all the other features in the
model are averaged out. In the context of ACoD facilities, partial
dependence plots are especially useful to better understand the
effects of various waste inputs on the AD process. In addition,
they can also reveal interactions between various waste types
to shed light on the co-digestion dynamics between different
wastes.

2.3.8. Computation
All computation was conducted in the statistical programming

language R. Various packages were employed in the analysis for
model building (caret, xgboost, ranger, etc.), data manipulation
(tidyverse, reshape2, etc.) data visualization (ggplot2, ggpubr),
and parallel computation for enhanced speed in model training
(doParallel). To ensure reproducibility, the full dataset is
available upon request, and code used in this study is open-

source and can be found at: https://github.com/djavandeclercq/

BiomethanePredictionML.

3. Results and discussion

3.1. Comparison of model performance

The tree-based models (random forest and XGBoost) performed
much better than elastic net. They were able to consistently predict
biomethane output at various time leads with an OSR2 above 0.80.
Elastic net predicted biomethane one day with an OSR2 of 0.85.
However, as the time lead increased, the OSR2 value declined
consistently to 0.50 for biomethane predictions 40 days ahead.
Random forest had an OSR2 value of 0.88 for predictions one day

https://github.com/djavandeclercq/BiomethanePredictionML
https://github.com/djavandeclercq/BiomethanePredictionML


Fig. 5. Comparison of model out-of-sample performance (n days ahead).

8 D. De Clercq et al. / Science of the Total Environment 712 (2020) 134574
ahead, and 0.82 for 40 days ahead. XGBoost managed an OSR2 of
0.87 for predictions one day ahead, and 0.80 for predictions 40 days
ahead. These performance values are summarized in Fig. 5.

The higher performance of tree-based models is intuitive, as
they are more capable of capturing more complex interactions in
the data than standard linear models.

Fig. 6 shows the predictions of the three models compared to
the actual biomethane output values for six different time leads
(1, 5, 10, 20, 30, and 40 days). The 3-day predictions can be found
in the supplementary information. As can be inferred from the
OSR2 performance values above, elastic net tracked actual output
closely with a short time lead (1, 5 days), but became increasingly
inaccurate as the prediction horizon extended. The tree-based
models, on the other hand, showed a steadier performance as the
prediction horizon extended. While the models were incapable of
matching the exact peaks and troughs of actual biomethane out-
put, they performed well in capturing the overall movement of bio-
methane output.

3.2. Feature importance

Fig. 7 and Fig. 8 show the feature importance (the factor by
which the error is increased compared to the original model if a
certain feature is permuted) charts generated for the random forest
and XGBoost models trained for six different prediction horizons.
The figures illustrate how the importance values of different fea-
tures evolve as the prediction horizon extends.

In Fig. 7 (random forest) for instance, for the one-day bio-
methane prediction horizon, important features included total
input, percolate, and the number of co-digested wastes. For the
40-day prediction horizon, however, the top three features were
food waste input, followed by total input and percolate input.
Fig. 8 shows that the feature importance values computed via
XGBoost are concentrated among a smaller subset of variables.
This is intuitive, since when there are several correlated features,
boosting tends to choose one and use it in several trees. For ran-
dom forest however, there is a random selection of features used
in each tree, meaning that each correlated feature has the chance
to be selected in one of these trees. Random forest’s parallel tree
construction means that each tree is not aware of which features
have been used in other trees. Hence, for XGBoost, total input is
highly correlated with other input features, making it an important
feature based on the boosting method.

3.3. Partial dependence

The partial dependence plots in Fig. 9 show the marginal effect
of a feature on the predicted outcome of a previously fit model
(Friedman, 2001). The prediction function is fixed at certain values
of the chosen features and averaged over the other features, allow-
ing us to isolate the effect of changing the value of a feature of
interest on future biomethane output. For example, the bottom
right panel of Fig. 9 demonstrates marginal effect of increasing
food waste on biomethane output, holding all other waste inputs
at a fixed amount. The top right panel of Fig. 9 shows that higher
percolate input has a strong positive effect on biomethane output
until about 175 tons, when the curve starts to flatten. The blue line
is LOESS (Locally Estimated Scatterplot Smoothing) smoothed to
facilitate interpretability.

Fig. 10 shows two-variable partial dependence plotted with a
convex hull, which outlines the region of the selected predictor
space (in this case food waste and municipal fecal residue) that
the model was trained on. This negates the possibility of over-
interpreting partial dependence beyond a reasonable region.
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Two-variable partial dependence is useful for showing the
interaction effect between two variables on biomethane output.
Fig. 10 provides the 2D two-way partial dependence visualizations
for ease of interpretability. For instance, the left panel shows par-
tial dependence for both food waste input and percolate input,
and it can be inferred that there exists a positive interaction
between food waste input and percolate input, since increasing
both features leads to increased biomethane production. The pos-
itive interaction flattens out at approximately 40 tons of food
waste input and 100 tons of percolate input.

3.4. Discussion

3.4.1. Limitations of machine learning applied to ACoD
Machine learning approaches, including artificial neural net-

works, are often criticized for their ‘‘black box” nature (Xu et al.,
2015), and may be problematic from an interpretability perspec-
tive when applied to ACoD. For instance, while linear model coef-
ficients and tree-based model feature importance scores might
provide some indication of variable importance, they do no give
a clear view on the underlying mechanisms governing the ACoD
process (Lauwers et al., 2013). Another problem is that some
machine learning models may be prone to overfitting data and
hence simulating non-informative noise.

Another crucial limitation is that machine learning
approaches require a substantial amount of data. This might
not be available in the early stages of an industrial-scale facility’s
operation. In this context, it might be necessary to conduct
experimental studies to determine optimal digester conditions.
For instance, Mirmasoumi et al. (2018) investigated the effect
of pre-treatment, digestion temperature increase, and co-
digestion in a WWTP to enhance biomethane productivity. These
kinds of experiments, where certain conditions are isolated, can
be difficult to implement with machine learning in the absence
of historical process data.

Based on this observation, further research needs to be con-
ducted on the minimum amount of data required for training
useful models. This study used four years of data for model



Fig. 7. Random forest feature importance.
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training; future research may look into using training data sets
restricted to 2-months, 4-months, or 6-months (and so on) of
observations.
3.4.2. Advantages of machine learning applied to ACoD
One great advantage of machine learning applied to ACoD is

that they do not require the extensive substrate characterization
that is a prerequisite for models such as ADM1 (Lauwers et al.,
2013). In addition, these models do not require a deep understand-
ing of biological or physicochemical processes (Xu et al., 2015), and
as a result can be much easier to develop and apply to practical
problems encountered in operational facilities. This allows indus-
trial ACoD project managers greater flexibility in deriving insights
from their operational data, regardless of the structure this data
might have.

Moreover, machine learning models are increasingly inter-
pretable, as demonstrated by the application of feature importance
analysis in conjunction with partial dependence analysis.
Additional model-agnostic methods for better interpretation
include Individual Conditional Expectation (Goldstein et al.,
2015), Accumulated Local Effects (ALE), Global Surrogate, Local
Surrogate, and Shapley Values (Papadopoulos and Kontokosta,
2019). This is a large boon for ACoD facility operators, as machine
learning models on operational big data can be used as a precursor
to experimental studies or mechanistic model development.
3.4.3. Suggestions for enhancing the value derived from applying
machine learning to ACoD

To implement out-of-box machine learning models effectively,
ACoD facilities could implement a comprehensive strategy which
encompasses the entire data analytics pipeline, including sensor
integration (e.g. monitoring temperature and pH), automatic data
collection (which minimizes the need for error-prone human
data input), dashboard analytics (visualization of process data in
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real-time), and predictive machine learning (e.g. predicting
biomethane output, digestate production, and occurrence of pro-
cess bottlenecks such as foaming). However, such initiatives
would have to be carefully considered from an economic per-
spective; comparing the extra costs of such installations to the
benefits that dynamic process optimization can offer requires
further research.

A positive finding is that high accuracies were achieved with
just 17 model input features, corresponding to the input volume
of different waste types. However, higher accuracy might be
achieved by using sensors to incorporate additional online param-
eter measurements (pH, temperature, VFA, TOC, HRT, etc.). This
would further reduce the need for lab analysis and provide addi-
tional information to boost machine learning models’ predictive
power and interpretability. However, additional research is still
required regarding the efficacy of machine learning approaches
in the case of facilities with a low level of automation, a limited
number of installed sensors, and spare data.

Machine learning models are often used empirically, and it can
be tempting to adopt an ‘‘as long as it works” mentality when
applying these models. As a result, researchers may be tempted
to engage in complex feature engineering in order to squeeze
slightly higher accuracies out of these models. A downside of this
is that it may become difficult to easily interpret the trained mod-
els. As a result, if interpretability is favored over accuracy, easily
understandable variables should be selected as inputs to machine
learning models so that feature importance and partial dependence
results can be interpreted intuitively. For instance, it would be
easier to interpret the partial dependence plot of a simple organic
waste input x or chemical de-foaming agent y rather than inter-



Fig. 9. Partial dependence plots for the random forest model at 20-day prediction horizon.

Fig. 10. Two-variable partial dependence plots for the random forest model at 20-day prediction horizon.
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preting the plot for a running cumulative sum of waste input x or
the logarithm of de-foaming agent y.
4. Conclusion

This study addressed the issue of interpretable ACoD modeling
in industrial-scale ACoD facilities by combining XGBoost and ran-
dom forest algorithms with interpretability tools such as partial
dependence analysis to accurately predict biomethane output.
These models, trained on four years of process data, shed light on
the usefulness of applying machine learning techniques to
industrial-scale anaerobic digestion. The results resolved some of
the limitations of previous literature pertaining to the generaliz-
ability of lab-scale, theoretical, and linear statistical models to
large-scale ACoD projects.

This study applied three machine learning regression models to
modeling biomethane output at as function of various organic
waste inputs in an industrial-scale anaerobic co-digestion facility.
The models were used to predict biomethane output at various
time horizons: 1 day, 3 days, 5 days, 10 days, 20, days, 30 days,
and 40 days.

Elastic net (a model with assumptions of linearity) was clearly
outperformed by random forest and XGBoost, which had out-of-
sample R2 values ranging between 0.80 and 0.88, depending on
the time horizon. In addition, feature importance and partial
dependence analysis was used to demonstrate the marginal effects
and interaction effects selected biowaste features.

Machine learning is not a silver bullet for modeling complex
interactions during anaerobic co-digestion in industrial-scale facil-
ities. However, this study demonstrated that it can be a highly
valuable tool with strong predictive power and good interpretabil-
ity. Used in conjunction with empirical lab-scale studies and mech-
anistic models, machine learning can offer valuable insights to the
operators of industrial-scale ACoD facilities. It is especially useful
in the short term if the plant operator possesses daily input–output
data and would like to derive rapid insight from this data prior to
more costly experimentation.

Additional value can be derived from machine learning applied
to industrial-scale anaerobic digestion by (1) enhancing end-to-
end data integration in ACoD facilities; (2) incorporating online
sensor measurement of important process parameters; and (3)
training models on a set of features than can be intuitively ana-
lyzed in subsequent feature importance and partial dependence
analyses.
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