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a b s t r a c t 

3D scene parsing has always been a hot topic and point clouds are efficient data format to represent 

scenes. The semantic segmentation of point clouds is critical to the 3D scene, which is a challenging 

problem due to the unordered structure of point clouds. The max-pooling operation is typically used to 

obtain the order invariant features, while the point-wise features are destroyed after the max-pooling 

operation. In this paper, we propose a feature fusion network that fuses point-wise features and local 

features by attention mechanism to compensate for the loss caused by max-pooling operation. By incor- 

porating point-wise features into local features, the point-wise variation is preserved to obtain a refined 

segmentation accuracy, and the attention mechanism is used to measure the importance of the point- 

wise features and local features for each 3D point. Extensive experiments show that our method achieves 

better performances than other prestigious methods. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

The prevalance of depth camera or Laser makes the acqui-

ition of 3D data relatively easy, more researchers have turned

heir attention to 3D scene parsing. 3D scene parsing includes

hree tasks:3D object detection [13,15,19] , 3D object recognition

14,16,22,24,29] and 3D semantic segmentation [9,11,16,18,24,25] . In 

hese tasks, 3D semantic segmentation is more challenging com-

ared to the other two tasks due to the demand of element-wise

lassification as well as unordered and unstructured properties

f its input data. Reviewing existing literature, many researchers

ave made great progress, which can be divided into three cate-

ories. The first transforms point clouds into voxelized occupancy

rids [13,17,27,30] , which can be applied to 3D CNNs. However, this

ethod is memory consuming and inefficient. The second uses 2D

ulti-view images to represent 3D shapes [14,15,17,22] , then 2D

NNs are applied to capture feature information. Yet 2D images

o not fully show 3D geometry information, so information loss

nevitably exists. The last one analyzes the raw point clouds di-

ectly [7,9,11,16,18,24,26] , which has good performances in terms of

peed and accuracy, and one of the most representative networks

s PointNet [16] . Later many researchers made improvements based
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n PointNet architecture [7,8,11,18] and obtained impressive perfor-

ances on benchmarks. 

However, PointNet based methods typically use the max-

ooling operation to ensure order invariance but with the price

f losing geometry information. The max-pooling operation aggre-

ates a batch of features into one feature, resulting in discarding

f the rest features. We take RSNets [7] architecture as an exam-

le to give a thorough explanation and our implementation is also

odified on it. The brief architecture of RSNets is shown as Fig. 1 .

he input data of RSNets is raw point clouds, and point-wise fea-

ures of each point are extracted by feature extraction module.

he slice pooling layer projects unordered and unstructured point

louds into an ordered and structured sequence of feature vectors

y first grouping points into slices according to their coordinates

nd then aggregating features of points in each slice into one fea-

ure by max-pooling operation and finally generating ordered and

tructured feature sequences. These feature sequences are fed into

NN layers, making the information from one slice flow to another

lice, which achieves information interaction among point clouds.

he slice unpooling layer assigns the new feature sequences gener-

ted by RNN layers back to each point by reversing the projection.

pecifically, each point in the same slice obtains the same features,

hich are called local features [21] because of information inter-

ction among points. At last, a classification network is applied to

roduce semantic results. During the whole process, information

oss is both existed in slice pooling layer and slice unpooling layer.

efore slice pooling layer, every point in a slice has its unique fea-

https://doi.org/10.1016/j.patrec.2020.03.021
http://www.ScienceDirect.com
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Fig. 1. The brief architecture of RSNets. 
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tures while after slice unpooling layer, each of them has the same

features, which is harmful to the accuracy of classification. 

In this paper, we propose a novel feature fusion method

based on attention mechanism to address the problems mentioned

above. We add a feature fusion network on the basis of RSNets,

where point-wise features and local features are fused by attention

mechanism to compensate for the information loss caused by the

max-pooling operation. The point-wise features come from the fea-

ture extraction module and the local features are generated by the

slice unpooling layer. These two kinds of features are the inputs of

the fusion network. The local features are first updated by a convo-

lution layer, and next concatenated with point-wise features. Then

the local features are normalized to a weighted map after passed

through a convolution layer. Finally they are multiplied with point-

wise features that are updated by a convolution layer. Point-wise

features are added to multiplication result by element-wise opera-

tion to produce new features. There are two feature fusions and

both use the same framework. In the second fusion, point-wise

features are replaced by the result generated from the first fusion

process rather than the point-wise features. At the end of our ar-

chitecture, the result comes from second fusion and local features

are added in element-wise then the addition result is fed into a

MLP(multilayer perceptron) to produce a label for each point. 

The performances of our method are validated on two challeng-

ing benchmark datasets. Both the S3DIS dataset [1] and the Scan-

Net dataset [2] are large-scale real-world datasets. Compared with

the performances of RSNets, Our method improves the mean IOU

by 1.05%, the mean accuracy by 2.68% on S3DIS dataset. And mean-

while on ScanNet dataset, it improves the mean IOU by 1.35%, the

mean accuracy by 3.25%. The key contributions of this paper are as

follows: 

• We propose to fuse point-wise features and local features for

3D semantic segmentation. For semantic segmentation net-

works of point clouds, such as PointNet [5,7,8,16,18,19] , the

problem of unordered point clouds can be solved by using

max-pooling operation while discarding the information of

non-maximal points. Our proposed feature fusion network

can solve the problem by incorporating the point-wise fea-

tures into local features. Thus, the point-wise variation is

preserved to obtain a fine-grained point cloud segmentation.
• This paper is the first one that applies attention mechanism

into semantic segmentation on point clouds. The attention

mechanism can measure the contributions of features to the

segmentation accuracy and can effectively remove redun-

dant features in the fusion process, leaving useful informa-

tion for classification. 

The remainder of this paper is organized as follows: we first re-

view related works in Section 2 . Then our proposed architecture is

presented in detail in Section 3 . Section 4 reports all experimental

results and Section 5 makes conclusions. 
. Related works 

In this section, we briefly introduce several representative

D data representations and corresponding methods. At last, the

rogress in the feature fusion on point clouds is shortly reviewed. 

.1. Voxelized volumes 

In [4,13,17,28,30] , the authors transformed 3D point clouds into

oxelized occupancy grids and used 3D CNNs to perform semantic

egmentation. However, there were some flaws using this method.

irst, quantization artifacts and information loss arose when trans-

orming 3D point clouds into voxelized occupancy grids. Mean-

hile, because of the sparsity of data, it is time and memory con-

uming when applying 3D CNNs. On the other hand, the size of in-

ut curb was relatively small, limited by the memory of 3D CNNs.

ater, many researchers have been working on solving the prob-

em of computational consuming and data sparseness. In [30] , the

uthors made an attempt to reduce the computation by sampling

he data before sending them to the networks. In [20] , the authors

esigned OctNet to use the sparseness of the data to hierarchically

artition the space using a set of unbalanced octrees to achieve a

eep and high-resolution 3D convolutional network. While many

f these works focused on solving the problems of data sparsity

nd computation, few of them made attempts to solve quantiza-

ion artifacts and information loss. 

.2. Multi-view renderings 

Another form of 3D data representations is multi-view render-

ng images. In [15,23] , the authors projected the 3D shapes into

D images at different viewpoints, then processed them by apply-

ng 2D CNNs and finally combined the 2D segmentation results to

btain 3D semantic segmentation results. However, there was a fa-

al drawback. It was inevitable for the loss of geometric structure

nformation that was very important in 3D data when 3D shapes

ere projected to 2D images. Therefore, it requires a more consid-

rate way to use this data format for 3D semantic segmentation. 

.3. Point clouds 

Many researchers turned to use point clouds as input [3,5–

,10–12,16,18,25,26] because of the flaws of voxelized volumes and

ulti-view renderings. In [16] , the authors firstly proposed an ar-

hitecture that analyzed the point clouds, which was referred to as

ointNet. In this framework, point-wise feature representations for

ach point were first produced and aggregated to a global feature

y using max-pooling operation, then two features were concate-

ated and fed to a MLP to get segmentation results. In the subse-

uent literature, the authors put forward PointNet++ [18] architec-

ure for the defect of PointNet in local features extraction and used



H. Zhou, Z. Fang and Y. Gao et al. / Pattern Recognition Letters 133 (2020) 327–333 329 

t  

f  

c  

c  

o  

w  

r  

c  

t  

t  

m

2

 

p  

o  

p  

s  

p  

m  

n  

t  

t  

a

3

3

 

{  

a  

i  

o  

i  

m  

i  

o  

o

F  

T  

e  

R  

s  

M  

R  

t  

t

3

 

R  

o  

l  

f  

p  

T  

t  

p  

a  

s  

t  

t  

s  

f  

f  

o

 

p  

s  

o  

R  

f  

r

3

 

g  

L

d  

c  

p  

v  

f  

n  

T  

M

M

w  

w  

i  

b  

a  

t  

F

W  

t  

s  

s  

t  

a  

a  

t  

s  

t  

a  

s  

s  

fi  

o  

s

 

p  

i  

a  

n  

l  

f  

M

4

 

p  
he hierarchical neural networks to obtain the local geometric in-

ormation of the point clouds. In [11] , the authors took place of the

ommon convolutional layer by χ-Conv when dealing with point

louds, in order to overcome the problem of unordered property

f point clouds. In [26] , the authors proposed EdgeConv module,

hich was based on graph neural networks. This module incorpo-

ated local neighborhood information and could be stacked or re-

urrently applied to learn global shape properties. In [25] , the au-

hors proposed a similar group recommendation network (SGPN)

o provide an intuitive learning framework for 3D instance seg-

entation on point clouds. 

.4. Point clouds feature fusion 

In the existing literature, we have not seen the fusion between

oint clouds features. But the fusion between point clouds and

ther forms of features was well studied. Such as the fusion of

oint clouds features and multi-view images features, and the fu-

ion of point clouds features and RGB images. In [14] , the authors

rojected point cloud data into multi-view images, then fused

ulti-view images and visual data together and fed them into CNN

etworks. In [29] , the author used two networks to extract fea-

ures from point cloud data and multi-view data. Then the atten-

ion mechanism was applied to fuse the two features together to

chieve the goal of 3D shape recognition. 

. Method 

.1. Problem statement 

The unordered point clouds are represented as X =
 x 1 , x 2 , . . . , x i , . . . , x n } with x i ∈ R 

d , and the corresponding labels

re L = { l 1 , l 2 , . . . , l i , . . . , l K } . The task of semantic segmentation

s to assign each point x i with one of the K semantic labels. In

ur architecture, the input is raw point clouds and the output

s Y = { y 1 , y 2 , . . . , y i , . . . , y n } where y i ∈ L is the label of x i . The

ax-pooling operation is usually used in networks to ensure order

nvariance. In mathematics, suppose the input of max-pooling

peration is F in = { f 1 , f 2 , . . . , f i , . . . , f n } , and the output is F out , the

peration can be described as follows: 

 

out = max 
f i ∈ F in 

{ f i } (1)

his formula indicates that max-pooling operation selects one el-

ment while the other elements are discarded directly. Back to

SNets, slice pooling layer aggregates features of points within one

lice into one feature to represent the information of this slice.

eanwhile, slice unpooling layer assigns the features yielded by

NN layers to points in the slice, where each point has same fea-

ures. Information loss exists obviously. This paper aims to address

his problem. Details are illustrated below. 

.2. A brief introduction to RSNets architecture 

The overall framework is shown as Fig. 2 . The blue part is

SNets. The input feature extraction module performs convolution

peration on input data with a series of multiple 1 × 1 convolution

ayers to extract features of each point, which are called point-wise

eatures. The slice pooling layer takes the point-wise feature as in-

ut and groups points into slices according to their coordinates.

hree slicing directions, including x, y and z axis. In each slice,

he slice pooling layer aggregates the point-wise features of all

oints in this slice into one feature by max-pooling operation sep-

rately in three directions. In each direction, the features of each

lice constitutes a sequence of feature vectors. These feature vec-

ors are sent to RNN layers to make information of each slice flow
o another. After this process, each slice has interaction with other

lices. And in each slice, the slice unpooling layer assigns the same

eature information to the points within this slice. Each point has

eatures called local features [21] because of the interaction with

ther points. 

In RSNets, the authors ignored the information loss in slice

ooling layer. After slice unpooling layer, the points in the same

lice have the same feature information while the unique features

f each point should be considered for point-wise classification.

egarding this issue, we propose an idea with feature fusion that

uses point-wise features and local features to improve the accu-

acy of the classification. 

.3. Point clouds feature fusion network 

Our detailed feature fusion network is shown in Fig. 3 , the

reen part. The inputs are point-wise features and local features.

ocal features F l with shape n × c 1 ( n points with features of c 1 
imensions) are first convoluted by a convolution layer and next

oncatenated with point-wise features F p with shape n × c 2 ( n

oints with features of c 2 dimensions) and then sent to a con-

olution layer to extract feature information. Finally, a normalized

unction is applied to it to generate a weighted map. The concate-

ation function is defined as ϕ(·) = R 

n ×c 1 × R 

n ×c 2 → R 

n ×( c 1 + c 2 ) .
he normalized function is φ(·) = sigmoid (·) . The weighted map

 ( F l , F p ) can be described as follows: 

( F l , F p ) = φ
(
C ∗

(
ϕ( C ∗( F l ) , F p ) 

))
(2) 

here C ∗ denotes the convolution operation. The values of

eighted map are in the range [0,1], which represents the signif-

cance of different features. Point-wise features are first updated

y a convolution layer and then multiplied with the weighted map

nd finally added to the multiplication results to produce new fea-

ures F ∗( F l , F p ). The whole process is shown in the expression blow:

 

∗( F l , F p ) = 

(
C ∗(F p ) � M( F l , F p ) 

)
� C ∗( F p ) (3) 

here the symbols C ∗, � and � denote the convolution opera-

ion, element-wise multiplication and element-wise addition re-

pectively. There are two feature fusions in total and both share the

ame architecture. The first one is the fusion of the point-wise fea-

ures and local features, where the point-wise features are gener-

ted by the input feature extraction module and the local features

re obtained from the RNN layers. The second one is the fusion of

he result from the first fusion and the local features. It is neces-

ary to perform two fusions. The first fusion is to compensate for

he loss caused by max-pooling operation and the fusion results

re too low-level to perform point-wise classification, while the

econd fusion aims to produce fine-grained semantic features for

emantic segmentation in order to improve the accuracy of classi-

cation. The experiment results also show that the performances

f two feature fusions are better than the one of single feature fu-

ion, which verifies our idea. 

We have tried other fusion methods, such as concatenating the

oint-wise features and the local features directly or adding them

n element-wise, while we found that the fusion method based on

ttention mechanism performed best. The reason is that concate-

ation just increases the dimension of features, which is too low-

evel to classify. Element-wise addition only changes the value of

eatures, which damages the property of local features to classify.

ore detailed discussions are presented in ablation studies. 

. Experiments 

To verify the performances of our proposed method and com-

are them with the state-of-the-art algorithms, we have evaluated
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Fig. 2. Diagram of our proposed network. The blue part corresponds to RSNets and the green part is our feature fusion network. In slice pooling layer, M denotes the 

max-pooing operation. S 1 and S 2 indicate two slices respectively(just take two slices as an example to explain). In each slice, different color blocks indicate different features. 

The channel of all features is 64. The features in a slice are aggregated into one feature by max-pooling operation. These aggregated features form a feature sequence and 

flow to RNN layers. In slice unpooling layer, the same color blocks mean the same features and the channel of all features is 64. In the feature fusion network, there are two 

fusions and both use the same network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Architecture of feature fusion networks. All CNNs are with one layer. The size of all convolution kernels are 1 × 1. The channels of local features and point-wise 

features are 64 and 64. The numbers of output channel of convolution on local features, point-wise features and concatenated features are 512, 64 and 64 respectively. 
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our method on two datasets, Stanford 3D dataset (S3DIS) [1] and

ScanNet dataset [2] . These two datasets are both large-scale realis-

tic 3D segmentation datasets. 

We follow the strategies in RSNets [7] to process all datasets.

For the S3DIS and ScanNet datasets, the data are divided into

smaller cubes with fixed size. A fixed number of points are sam-

pled from the cubes as the inputs of RSNets. The number is fixed

as 4096 for these two datasets. In terms of RSNets, there are three

1 × 1 convolution layers with output channel number of 6 4, 6 4,

and 64 respectively in the input feature extraction module. The im-

plementation of RNN layers is a stack of 6 bidirectional RNN lay-

ers where the numbers of channels are 256, 128, 64, 64, 128, and

256. The channel of features output by slice unpooling layer is 64.

In terms of proposed feature fusion networks, the kernel sizes of

all convolutions with one layer are 1 × 1. The numbers of output

channels of the convolution on local features, point-wise features

and concatenating result are 512, 64 and 64, respectively. Three

1 × 1 convolution layers with output channel number of 512, 256

and K are used in the MLP, where K is the number of semantic

categories. The last convolution layer in the MLP produces a pre-

dictable label for each point. And the cross entropy function is em-
 a  
loyed to compute errors. Our proposed architecture takes point

louds as the input data and generates labels for points after all

odules, which makes it an end-to-end trainable network. 

We take two widely used metrics: mean intersection over

nion(mIOU) and mean accuracy(mACC) as our principles to mea-

ure the segmentation performances. We first give the perfor-

ances of our method on the S3DIS dataset and then comprehen-

ive studies are conducted to validate various architecture choices

n our method. At last, we report the performances on the ScanNet

ataset. 

.1. Segmentation on the S3DIS dataset 

We first report the performances of our method on the S3DIS

ataset. The S3DIS dataset captures RGB-D point clouds from three

uildings, including 271 rooms. The number of categories of point

louds tags is 13. We follow the division of the training set and

he testing set in [24] . All the parameters in data processing are

et as in RSNets. The initial learning rate is 0.001. The perfor-

ances of our method are reported in Table 1 . Besides the over-

ll mean IOU and mean accuracy, the IOU of each category is also
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Table 1 

Results on Large-Scale 3D Indoor Space Dataset(S3DIS). Superscripts A and C denote data augmentation and post-processing (CRF) are used. IOU of each category is 

also reported here. 

Method mIOU mACC ceiling floor wall beam column window door chair table bookcase sofa board clutter 

PointNet A 41.90 48.98 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22 

3D CNN 43.67 – – – – – – – – – – – – – –

3D CNN 

A 47.67 54.91 90.17 96.48 70.16 0.00 11.40 33.36 21.12 76.12 70.07 57.89 37.46 11.16 41.61 

3D CNN 

AC 48.92 57.35 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60 

RSNet 51.93 59.42 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64 

Ours 52.98 62.10 93.40 98.39 79.43 2.15 17.03 48.17 55.24 66.09 66.62 52.65 24.93 39.99 44.68 

Table 2 

The varying number of fusion times on S3DIS dataset. 1 

and 2 denotes one fusion and two fusions respectively. 

Number of times mIOU mACC 

1 51.02 59.40 

2 52.98 62.10 

p  

p  

r  

p  

Table 3 

The varying styles of fusion on S3DIS dataset. 

Style of fusion mIOU mACC 

Element-wise addition 49.08 59.39 

Concatenation 50.73 59.03 

Based on attention mechanism 52.98 62.10 

s  

p  

d  

b  

F

a

s

resented. Some segmentation results are visualized in Fig. 5 . The

erformances of RSNets and previous state-of-the-art methods are

eported in Table 1 as well. The results show that our method

erforms better than RSNets owing to the additional feature fu-
ig. 4. There are three scenes in the figure. The attention maps of first fusion are liste

re maps with different feature channel. The color from blue to red indicates different 

egmentation. (For interpretation of the references to color in this figure legend, the read
ion network. In particular, compared to RSNets, our method im-

roves the mean IOU by 1.05% and mean accuracy by 2.68%. The

etailed per-category IOU results show that our method performs

etter than RSNets in more than half of all categories(7 out of 13).
d on the top and the maps of second fusion are in the below. From left to right 

weight values for each point feature. The high values tend to be more crucial for 

er is referred to the web version of this article.) 
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Table 4 

Results on the ScanNet dataset. IOU of each category is also reported here. 

Method mIOU mACC wall floor chair table desk bed book-shelf sofa sink 

PointNet 14.69 19.90 69.44 88.59 35.93 32.78 2.63 17.96 3.18 32.79 0.00 

PointNet + 34.26 43.77 77.48 92.50 64.55 46.60 12.69 51.32 52.93 52.27 30.23 

RSNet 39.35 48.37 79.23 94.10 64.99 51.04 34.53 55.95 53.02 55.41 34.84 

Ours 40.67 51.62 82.36 95.24 85.80 51.88 36.29 55.89 53.42 55.96 33.46 

Method bathtub toilet curtain counter door window shower curtain refrigerator picture cabinet other furniture 

PointNet 0.17 0.00 0.00 5.09 0.00 0.00 0.00 0.00 0.00 4.99 0.13 

PointNet + 42.72 31.37 32.97 20.04 2.02 3.56 27.43 18.51 0.00 23.81 2.20 

RSNet 49.38 54.16 6.78 22.72 3.00 8.75 29.92 37.90 0.95 31.29 18.98 

Ours 51.89 56.79 7.59 24.98 6.84 10.66 32.10 39.25 0.00 32.45 20.59 

Fig. 5. Sample segmentation results on the S3DIS dataset. From left to right are the input scenes, ground truth, results produced by our method and results of RSNet. 
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From the segmentation results, we find that our method outper-

forms than RSNets at the junction of several objects(labeled by red

bounding box in Fig. 5 ). We argue that it benefits from feature fu-

sion. In RSNets, the points within a slice are assigned the same

features by slice unpooling layer while in the junction areas, it can

not ensure that the points belong to the same category. But the

feature fusion makes sure that the points in one slice have both lo-

cal features and the unique features of themselves. Therefore, our

method can correctly classify the points even in junction areas. 

4.2. Ablation studies 

In this subsection, We discuss the choices of the number of fu-

sions and the way to fuse. For the number of fusions, we have two
andidate values: one and two. The results are reported in Table 2 .

t is clear that the performances of two fusions are better than the

ne of just one fusion. We argue the reason is that one fusion is

ust able to compensate for the information loss but does not pro-

uce fine-grained features for classification. And the second fusion

an solve this issue perfectly. 

For the design of the fusion network, we have explored several

usion methods, such as adding local features and point-wise fea-

ures in element-wise style or concatenating them directly, which

re inferior to the attention mechanism fusion method. The results

re reported in Table 3 . It is clear that the method based on at-

ention mechanism outperforms than others which attribute to its

unction that pay more attention to key features and less to the
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therwise. The attention map is presented in Fig. 4 . The points

ith high weight values in second fusion attention map are less

han the one in first fusion, which means that the second fusion

aptures more fine-grained features. 

.3. Segmentation on the ScanNet dataset 

We also have evaluated the performance on ScanNet dataset [2] .

canNet dataset is a scene semantic labeling task with a total of

513 scanned scenes. We use 1201 scenes for training and the rest

or testing as in [7,18] . In our method, we only use xyz information

nd take mIOU and mACC as our metrics. As shown in Table 4 , our

ethod achieves better performances compared with RSNets. The

esults demonstrate the feature fusion network is useful to solve

he problem caused by max-pooling operation in 3D point clouds

emantic segmentation again. 

. Conclusion 

In this paper, we introduce a novel method based on attention

echanism that fuses point-wise features and local features in se-

antic segmentation on point clouds, which can compensate for

he information loss caused by max-pooling operation. There are

wo fusions in our method where the first is the fusion of point-

ise features and local features and the second is the fusion of

he result from the first fusion and local features. Meanwhile, the

eature fusion network based on the attention mechanism effec-

ively removes redundant features in fusion process and obtains

ew features containing more useful information to improve the

ccuracy of point clouds segmentation. The results of experiments

ave shown that our method performs better than RSNets, partic-

larly in the junction area of several objects, which verifies the ef-

ectiveness of feature fusion based on attention mechanism. 
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